

3.4V OPERATION 1W MMIC POWER AMPLIFIER WITH SrTiO₃ CAPACITORS FOR DIGITAL CELLULAR PHONES

K.Yamaguchi, T.B.Nishimura, N.Iwata, K.Takemura¹, M.Kuzuhara² and Y.Miyasaka¹

Kansai Electronics Research Laboratories, NEC Corporation

9-1, Seiran 2-Chome, Otsu, Shiga 520, Japan

¹Fundamental Research Laboratories, NEC Corporation

²ULSI Device Development Laboratories, NEC Corporation

ABSTRACT

This paper describes 950MHz power performance of a two-stage MMIC amplifier utilizing n-AlGaAs/InGaAs/n-AlGaAs FETs and SrTiO₃ capacitors. Under 3.4V drain bias operation, the MMIC with 2.0×2.4mm² area delivered a π/4-shifted QPSK output signal of 0.8W (29.0dBm), a power-added efficiency (PAE) of 30% and an associated gain of 26.4dB with an adjacent channel leakage power at 50kHz off-center frequency of -50.5dBc. It also achieved a saturated output power of 1.1W with PAE of 39%.

INTRODUCTION

In recent wireless communication systems, small size and high efficiency MMIC power amplifiers are strongly demanded. Recently, GaAs MESFET MMIC power amplifiers for cellular phone applications have been reported. A GaAs MMIC power amplifier with 2.5×3.48mm² area exhibited a saturated output power of 1.1W for analogue cellular applications at a drain bias voltage (V_d) of 3.3V[1]. For CDMA/AMPS dual mode cellular applications, an MMIC power amplifier with 2.5×2.9mm² area delivered an output power (P_{out}) of 0.53W at $V_d = 4.7V$. However, 3.4V operation MMIC power amplifiers for digital cellular applications with 1W P_{out} have not been reported yet. In this work, a 2.0×2.4mm² sized 1W MMIC amplifier for 3.4V digital cellular phone applications has been successfully fabricated.

DESIGN AND FABRICATION

The fabricated MMIC power amplifier utilized n-AlGaAs/InGaAs/n-AlGaAs Hetero-junction FETs (HFET) and SrTiO₃ (STO) capacitors.

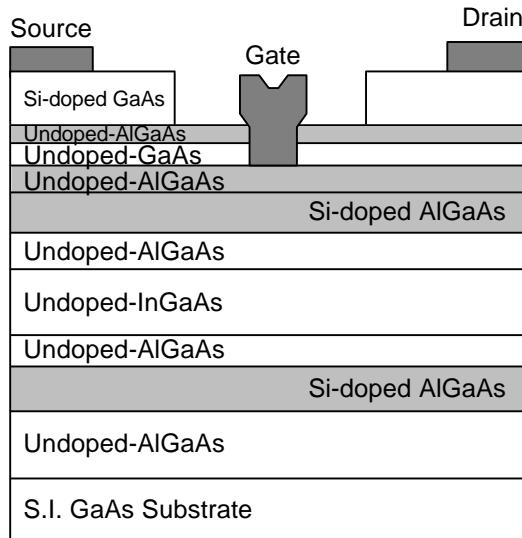


Figure 1 Cross section of the HJFET

Figure 1 shows the cross section of the fabricated HJFET. An undoped AlGaAs Schottky layer was incorporated on the upper Si-doped AlGaAs layer to achieve a sufficiently high breakdown voltage[3]. Furthermore, an undoped GaAs layer and an undoped AlGaAs layer were incorporated between the AlGaAs Schottky layer and an Si-doped GaAs cap layer, as etch stop layers. With this epitaxial wafer, a double recessed structure was fabricated by electron cyclotron resonance plasma dry-etching using SF_6 and BCl_3 [3]. A $1.0\mu m$ long WSi Schottky gate was fabricated on the recessed AlGaAs Schottky layer. Figure 2 shows typical drain current (I_d) versus drain-to-source voltage (V_{ds}) characteristic for the fabricated HJFET. The HJFET exhibited a maximum I_d of $500mA/mm$ with a high gate-to-drain breakdown voltage of $20V$. The threshold voltage was $-0.8V$ with $20mV$ standard derivation on a 3 inch wafer.

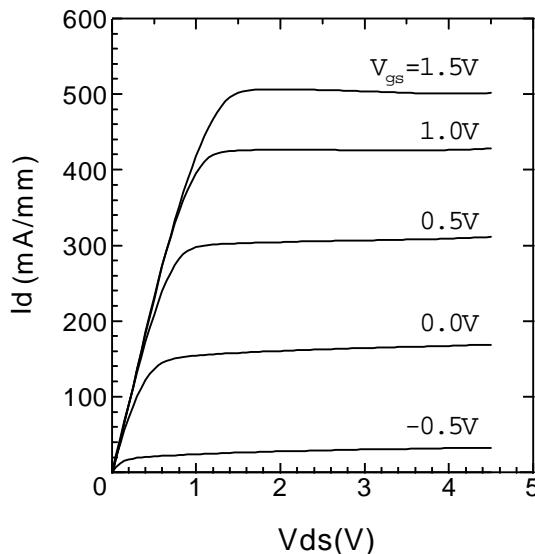


Figure 2 Drain I-V Characteristics of the HJFET

Figure 3 shows the cross section of the fabricated STO capacitor employed in the MMIC. The capacitor consists of a Pt/Ti/Pt/Ti stacked base electrode to achieve high tolerance under ion-milling of STO. This results in low electrode resistance[4]. A 200nm-thick STO film was deposited on the base electrode by an RF-sputtering method at a substrate temperature of 450°C. The capacitor exhibited a dielectric constant (ϵ_r) of 180. This high ϵ_r was reported to be constant up to 20GHz[4]. The breakdown voltage defined at a 10mA/cm² leakage current was 50V.

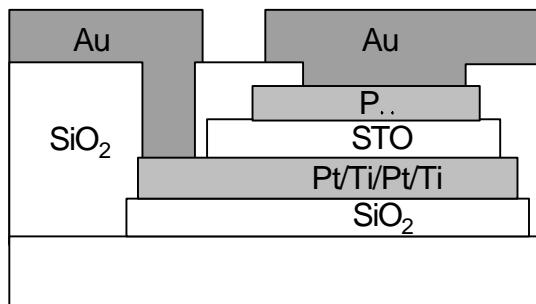


Figure 3 Cross section of the STO capacitor

The circuit configuration of the fabricated one-chip MMIC power amplifier is shown in Figure 4. The MMIC includes a two-stage HJFET amplifier with input and output matching circuits as well as bias circuits utilizing STO capacitors. Two FETs with W_g =3.5mm and 17.5mm were directly connected with a series capacitor. At 950MHz, the output impedance of the first-stage FET was $3.5+j5.5\Omega$, whereas the input impedance of the second-stage FET was $1.0+j2.5\Omega$. These rather similar matching impedances, which are due to the proper choice of the gate width, enable connection without a complicated matching circuit. The output matching circuit was designed for maximum output power. This also achieved minimized distortion characteristics. The drain bias circuit for the second-stage FET was designed to exhibit high impedance at the fundamental frequency. Spiral inductors with 100μm wide and 5μm thick plated Au were employed to reduce DC and RF loss.

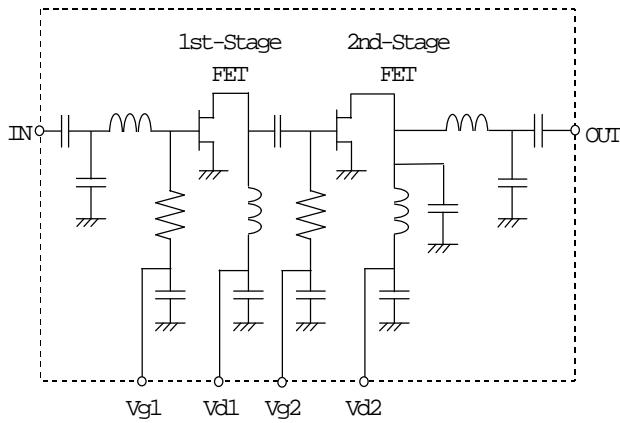


Figure 4 Schematic circuit of the MMIC

Figure 5 shows a photograph of the developed MMIC amplifier. The chip size is $2.0 \times 2.4 \text{ mm}^2$. High power density of the HJFET and high ϵ_r of the STO capacitor resulted in substantial reduction in the size of MMIC.

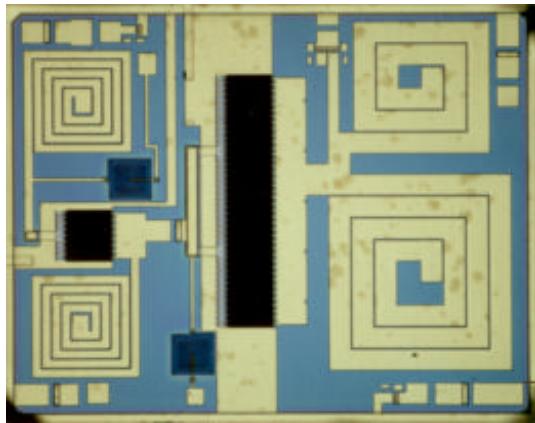


Figure 5 Photograph of the MMIC amplifier

RESULTS

For personal digital cellular (PDC) applications, 950MHz power performance of the MMIC power amplifier was evaluated at drain bias voltages (V_{d1}, V_{d2}) of 3.4V, which corresponds to the DC operating voltage for PDC system when one Li-ion battery cell was used. The MMIC amplifier was operated at a gate bias voltage for the first-stage (V_{g1}) of -0.35V and those for the second-stage (V_{g2}) of -0.4V. Figure 6 shows small signal gain and output return loss as a function of frequency for the MMIC amplifier. The amplifier achieved small signal gain of 28.2dB with 1dB-gain-down bandwidth of 70MHz.

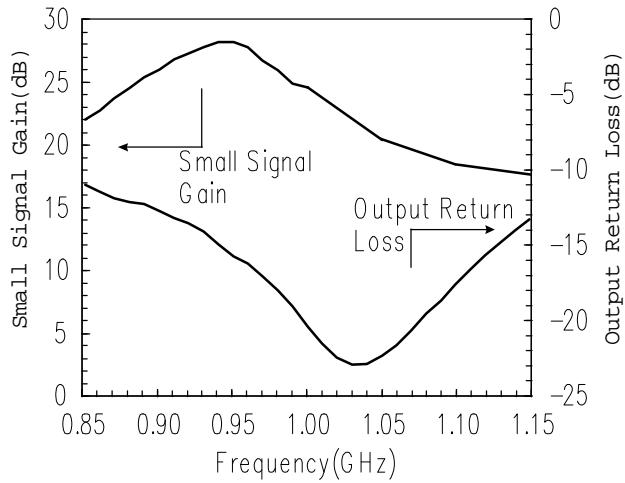


Figure 6 Small signal gain and output return loss versus frequency for the MMIC amplifier

Figure 7 shows P_{out} , power-added efficiency (PAE), adjacent channel leakage power at 50kHz off-center frequency (P_{adj}) and Gain as a function of input power (P_{in}) with a 950MHz $\pi/4$ -shifted QPSK signal. The MMIC power amplifier exhibited P_{out} of 29.0dBm (0.8W), PAE of 30% and P_{adj} of -50.5dBc with associated Gain of 26.4dB. It also yielded a saturated output power of 30.5dBm (1.1W) and PAE of 39%. To the authors' knowledge, the fabricated MMIC is the first power amplifier satisfying the PDC criteria.

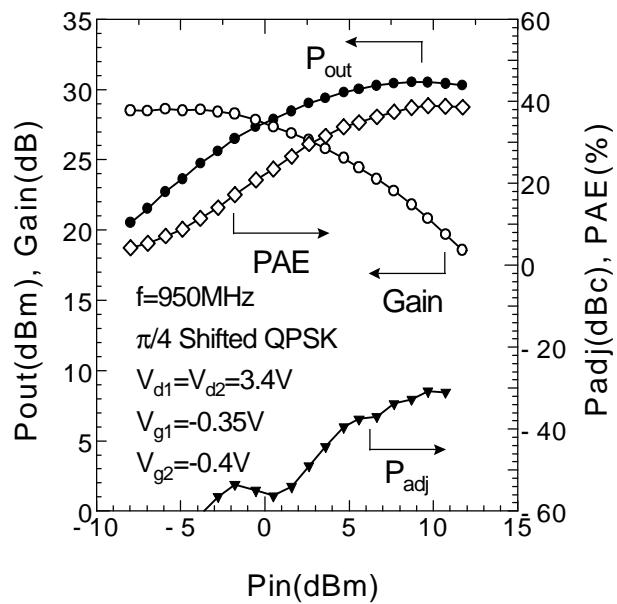


Figure 7 P_{out} , PAE, P_{adj} and Gain as a function of P_{in} for the MMIC amplifier

SUMMARY

We have developed a two-stage MMIC power amplifier with $2.0 \times 2.4 \text{mm}^2$ area utilizing HJFETs and STO capacitors. For 950MHz PDC application, the amplifier exhibited P_{out} of 29.0dBm (0.8W), PAE of 30% and Gain of 26.4dB with P_{adj} of -50.5dBc under 3.4V drain bias operation. The developed MMIC power amplifier is promising for small and light weight digital cellular phones.

ACKNOWLEDGEMENT

The authors would like to thank N. Tawarayama for STO film deposition, M.Funahashi and H.Oikawa for useful discussion and suggestions. They are also grateful to Drs. M.Ogawa, T.Itoh and T.Uji for their encouragement.

REFERENCES

- [1] K. Yamamoto, K.Maemura, M.Komaru, N.Kasai, T. Oku, Y.Sasaki and N.Tanino, "A 3.3V, 1W GaAs One-Chip Power Amplifier MMIC for Cellular Phones", Proc. 24th European Microwave Conference, pp.1066-1071, 1994.
- [2] T.M.Roh, Y.Suh, B.Kim, W.Park, J.B.Lee, Y.S.Kim and G.Y.Lee, "GaAs low-high doped MESFET MMIC power amplifier for CDMA/AMPS dual-mode cellular telephone", Electron. Lett., 1996, 32,(20), pp.1928-1929.
- [3] N.Iwata, M.Tomita, K.Yamaguchi, H.Oikawa and M.Kuzuhara, "7mm Gate Width Power Heterojunction FETs for Li-Ion Battery Operated Personal Digital Cellular Phones", IEEE GaAs IC Symp. Tech. Dig. pp.119-122, 1996.
- [4] T.B.Nishimura, N.Iwata, K.Takemura, M.Kuzuhara and Y.Miyasaka, "SrTiO₃ Capacitors with Relative Dielectric Constant of 200 on GaAs Substrate at Microwave Frequency", Jpn. J. Appl. Phys. pt.. vol.135, No.12B, 1996, pp.L1683-1684.